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ABSTRACT

The Virus Pathogen Database and Analysis
Resource (ViPR, www.ViPRbrc.org) is an integrated
repository of data and analysis tools for multiple
virus families, supported by the National Institute
of Allergy and Infectious Diseases (NIAID)
Bioinformatics Resource Centers (BRC) program.
ViPR contains information for human pathogenic
viruses belonging to the Arenaviridae, Bunyaviridae,
Caliciviridae, Coronaviridae, Flaviviridae, Filoviridae,
Hepeviridae, Herpesviridae, Paramyxoviridae,
Picornaviridae, Poxviridae, Reoviridae, Rhabdo-
viridae and Togaviridae families, with plans to
support additional virus families in the future. ViPR
captures various types of information, including
sequence records, gene and protein annotations,
3D protein structures, immune epitope locations,
clinical and surveillance metadata and novel data
derived from comparative genomics analysis.
Analytical and visualization tools for metadata-
driven statistical sequence analysis, multiple
sequence alignment, phylogenetic tree construc-
tion, BLAST comparison and sequence variation
determination are also provided. Data filtering and
analysis workflows can be combined and the results
saved in personal ‘Workbenches’ for future use.
ViPR tools and data are available without charge
as a service to the virology research community to
help facilitate the development of diagnostics,
prophylactics and therapeutics for priority patho-
gens and other viruses.

INTRODUCTION

Viral disease outbreaks tend to occur every several years
in the human population (1-4). During such outbreaks,
identification of the causative agent and comparative
genomic analysis can be critical to limiting the spread
of the virus and identifying suitable treatment options.
While the first lines of defense against such outbreaks
are clinical reporting and automated surveillance, ‘wet
lab’ experimentation of viral isolates is also important.
Bioinformatics tools and database resources that provide
information about the genomic structures and phenotypic
characteristics of known viruses can make this process
more efficient by supporting data mining for the develop-
ment of hypotheses worthy of in-depth laboratory
experimentation on the emerging strain.

Sequence data deposited in archives such as GenBank
are extremely valuable in the computational analysis
of emerging viruses. These sequence records can be
enhanced through integration with additional knowledge
about the viral strains including: gene and protein anno-
tations, immune epitope locations, 3D protein structures,
clinical metadata, etc. Database resources and modern
computing make storing and retrieving such a wealth of
data tractable.

With foresight into the importance of providing
access to such information, the National Institute of
Allergy and Infectious Diseases (NIAID) within the US
National Institutes of Health (NIH) implemented the
Bioinformatics Resource Centers (BRC) for Infectious
Diseases program (5,6) to develop open, integrated
online resources for data about human pathogens. Five
such centers currently exist, each supporting a different
class of human pathogens or insect vectors (www
.pathogenportal.org). The Virus Pathogen Database and
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Analysis Resource (ViPR; www.ViPRbrc.org) serves as
the publicly accessible repository for viruses categorized
as either A—C priority pathogens or viruses that adversely
affect public health (http://www.niaid.nih.gov/topics/
biodefenserelated/biodefense/research/pages/cata.aspx).
ViPR is unique among other virus-centered databases
in that it contains a wealth of integrated information for
a large number of virus families that are pathogenic
specifically to humans. This is in contrast with the NCBI
viral genome project, which provides sequence data for
all viruses (7) or the Human Immunodeficiency Virus
sequence database (http://www.hiv.lanl.gov) and the
Influenza Research Database (IRD, www.fludb.org) (8),
which focus on a particular taxon or virus pathogen.

The goal of the BRC program is to provide the neces-
sary data, bioinformatics tools and workflows to enhance
ongoing basic and applied research. By integrating the
data with a variety of computational analysis tools free
of charge to the virology research community, complex
analyses that take advantage of cross-referenced data
within the ViPR database become possible.

DESCRIPTION
Summary of ViPR data

As of June 2011, ViPR holds sequence data and related
information for over 50 000 virus strains from 912 species
belonging to 70 genera and 14 families: Arenaviridae,
Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae,
Flaviviridae, Hepeviridae, Herpesviridae, Paramyxoviridae,
Picornaviridae, Poxviridae, Reoviridae, Rhabdoviridae and
Togaviridae. ViPR integrates data and other information
from three different types of sources: (i) data transferred
from public archives, (ii) data directly submitted by
researchers and (iii) data derived through computational
methods.

Data from public archives. The ViPR database integrates
various types of data acquired from multiple publicly
accessible database resources (Supplementary Table S1).
Specifically, ViPR includes >64000 genomic segment
sequences from GenBank (9), >220000 protein sequences
from UniProt (10), >1400 experimentally determined
T-cell and B-cell epitopes from the Immune Epitope
Database (IEDB; www.iedb.org) (11), >2900 structures
from the Protein Data Bank (PDB; www.pdb.org) (12)
and >59000 Gene Ontology annotations (GO, www.
geneontology.org) (13) (Supplementary Table S2). All
these data are updated with each bimonthly release and
are directly searchable using intuitive web-based user
interfaces.

Data  from direct submission. Additional projects,
including those that involve Dengue virus and SARS cor-
onavirus strains being sequenced by the NIAID-
sponsored Genomic Sequencing Centers for Infectious
Diseases program, submit metadata associated with the
sequence data directly to ViPR including human clinical
information about disecase symptoms, diagnostic test
results, disease severity, etc. associated with infection.

Searching for strains based on direct submission
metadata for those viruses annotated with such data
returns strain records and genome sequences matching
the query criteria.

Novel derived and predicted data. These public and direct
submission data are augmented with novel data derived
from numerous comparative genomics and other bioinfor-
matics analyses performed by the ViPR team. Examples of
derived data at the strain level include computationally
improved annotations and manually curated information,
which are displayed with a Genome Map image and
a Protein Information table on the Strain Details page.
Selecting a gene or protein from the image or table
loads the Gene/Protein Details page (Supplementary
Figure S1), which contains derived data consisting of pre-
dicted immune epitopes determined using the NetCTL
algorithm (14), protein domains and motifs predicted
using InterProScan (15), molecular weight, isoelectric
point, closest BLAST hits, homologous PDB structures,
etc. These data are combined with the strain name,
sequence data, virus taxonomy, host and country of
isolation, collection date, as well as other information on
the Gene/Protein Details pages.

The ViPR annotation process extends the information
contained in the representative RefSeq strain for each
virus species. For example, multiple sequence alignment
is used to map homologous regions across related virus
genomes in order to transfer sequence region annotations,
including mature peptide cleavage sites on polyproteins,
to the genomes lacking annotations. Virus Orthologous
Clusters (VOC) annotations group sets of proteins
having similar functions within large DNA virus families
as determined using the OrthoMCL algorithm (16).

We have recently developed a novel Sequence Feature
Variant Type (SFVT) component in ViPR that catalogs
the precise location of characterized regions within virus
proteins. This component is based on similar work per-
formed for the human HLA proteins (17), and has been
customized for the virology community. Information used
to define the various ‘Sequence Features’” (SFs) was
obtained from UniProt, GenBank, IEDB and the scientific
literature. SFs are categorized as structural (e.g. alpha
helices), functional (e.g. active sites), immune epitopes
and sequence alteration positions, with current support
for Hepatitis C (subtype la), Dengue (serotypes 1-4)
and Pox (Vaccinia) viruses. Initial SF definitions for
each characterized region have been inspected and
validated by domain experts to ensure accuracy.

All sequence records in ViPR belonging to the
designated taxon are searched to identify all unique
amino acid sequence variations existing for a defined SF.
Strains that repeat the same sequence variation pattern are
assigned to the same ‘Variant Type’ (VT). All computed
results are then stored in the database and can be accessed
within ViPR. The Sequence Feature Details page displays
additional information about the SF including the protein
and strain from which it was originally identified, the
observed VTs, hyperlinks to the homologous 3D protein
structures, and the ability to search for a VT based on
sequence. For simplicity, links to the relevant defined
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SFs and VTs are found on the respective Protein Details
pages. By subdividing strains based on the unique
sequence variations in defined protein regions, SFVT
analysis can rapidly identify genotypic polymorphisms
that correlate with a specific phenotype at a finer level of
granularity than was previously possible.

Search and analysis capabilities. To access ViPR data
as well as analytical and visualization tools, the user
begins by selecting a virus family on the home page
(Supplementary Figure S2). ViPR has been designed in
this way to manage the unique genomic structural and
data type characteristics associated with different virus
families. Queries for virus strains can be constructed to
include genus, species, geographical and/or temporal
points of isolation, virus host, clinical data (where avail-
able), etc. Alternatively, simple keyword searches and
more advanced searches can be performed to retrieve the
desired information. Virus genomes that match the query
are displayed in a summary table on the Genome Search
Results page (Supplementary Figure S3). Selecting any of
the strains in the list will bring up the corresponding
Strain Details page as described above.

The data in ViPR can be analyzed using a suite of
comparative genomics analysis and visualization tools
including phylogenetic tree reconstruction with the
FastME, RAXML or PhyML algorithms (18-20), tree
manipulation with Archaeopteryx (21) and evolutionary
model optimization with modelTest (22); multiple
sequence alignments calculated with MUSCLE (23) and
visualized with JalView (24,25), 3D protein structure and
sequence feature visualization with Jmol (26), a metadata-
driven comparative genomics automated workflow,
BLAST (27), sequence variation analysis using sequence
logos (28), a protein sequence pattern matching tool and
the automated Genome Annotation Transfer Utility (29).
Several of these tools will be described in more detail
within the context of the comparative analysis use case
described below.

Scientific use case illustrating comparative analysis

ViPR development has been guided by various scientific
use cases to define requirements for relevant data collec-
tion and storage, database queries, and analysis methods
to improve both the integrated informatics and the sup-
ported analytical workflows. To showcase how the various
types of data and associated metadata within ViPR can be
used to explore sequence variation within a virus species,
we will use Dengue virus (DENYV) data in a comparative
genomics use case.

Dengue virus is an arthropod-borne virus native to
tropical regions of the world and endemic in areas where
it colocalizes with the preferred Aedes aegypti mosquito
vector. Because of these restrictions, it can be assumed
that DENV infections reported in clinics located in
non-tropical regions of the world are likely due to recent
travel by the patient to an endemic area. These imported
cases can thus establish viral lincage in new regions
as a result of human travel. The CDC has recently
demonstrated that the travel history of US residents
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having been clinically diagnosed with DENV between
1999 and 2000 validates such an explanation (30). As an
example use case, we will extend the CDC study by per-
forming an in-depth comparative genomics analysis of all
DENYV serotype 14 isolates taken between the years of
1999 and 2000, involving the following bioinformatics
workflow: (i) identify sequence records using the ViPR
Genome Search interface; (ii)) save the matching
sequence records as a working set in a personal
Workbench; (iii) reconstruct a phylogenetic tree; (iv) visu-
alize the multiple sequence alignment; (v) perform a
metadata-driven statistical analysis of sequence variation;
(vi) determine where these differentiating residues are
located in relation to validated Sequence Features; and
(vii) examine the 3D structure associated with a homolo-
gous protein from a related DENV-2 strain. Although this
illustration is focused on Dengue virus, it should be noted
that similar tasks can be performed for other virus species
to address other biological questions by combining the
wealth of relevant data with the suite of bioinformatics
tools integrated into ViPR (Supplementary Figure S4).

Search for relevant sequence records. To begin, a query is
constructed for all DENV 1-4 records, isolated from
humans, between the years 1999 and 2000. In June 2011,
this specific query returned 82 whole genome records
(8 DENV-1, 33 DENV-2, 33 DENV-3 and 8 DENV-4)
from eight countries (Brazil, Cambodia, Colombia,
Ecuador, Nicaragua, United States, Venezuela and
Vietnam). The content on the Genome Search Results
page can be sorted by clicking on any of the column
headings. Selected records from this page can then be
transferred to any of the relevant analysis and visualiza-
tion tools using the ‘Run Analysis’ pull-down tab.

Save to the Workbench. The Workbench feature in ViPR
is relatively novel among virus database resources and is
used to store search and analysis results in designated
personal workspaces on the ViPR server. Distinct
personal workspaces can be established for each virus
family by providing a valid email address and a
password for login purposes. The Workbench provides
an interface to construct ‘working sets’, consisting of the
results from one or more searches, and allows the re-use of
sequence data from various strains in multiple analyses
(Supplementary Figure S5). Additionally, users can
upload their own custom sequence data and other files
to the Workbench for analysis using the various tools
provided by the system, and can share items within their
Workbench with collaborators, virtually. For the current
use case, all the genome sequence records from the
query result page described above are saved as a custom
working set for subsequent analysis.

Phylogenetic  tree calculation and visualization.

Phylogenetic trees can be calculated on the ViPR server
using sequence records selected from a query result, an
existing working set or uploaded to the system through
a web interface. Phylogenetic tree reconstructions can then
be saved in the Workbench or downloaded in either
Newick or phyloXML format (31). For the current use
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case, a FastME phylogenetic tree is constructed with the
desired sequences by choosing the ‘Quick Tree’ option
on the ‘Generate Phylogenetic Tree’ page. PhyML and
RAXML are also provided as alternative phylogenetic
tree reconstruction algorithms.

Once complete, the Archaecopteryx phylogenetic tree
viewer can be used to quickly visualize, explore and ma-
nipulate the resulting tree using typical actions such
as re-rooting, select subtrees, branch swapping, etc. This
application has recently been customized to take advan-
tage of the extensive sequence metadata within the ViPR
database by allowing user-driven coloring of tree ‘leaves’
according to year, country of isolation or host from which
the strain was originally isolated. The customized graphic
can then be exported for enhanced interpretation and
inclusion in publications. For the current use case, the
phylogeny was calculated for all sequences matching our
initial query and colored by the country of isolation. This
tree reconstruction shows the major branching structures
that separate sequences primarily according to serotype
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(Figure 1A). However, within the serotype 2 branch, two
separate US lineages can be identified—one corresponding
to a Brazilian lincage and one corresponding to a
Nicaraguan lineage—suggesting that two different
serotype 2 introduction events have occurred in the
United States.

Multiple sequence alignment calculation and visualization.
Sequence data from multiple sources, including search
results, working sets and uploaded sequences in FASTA
format, can be used as input to run a custom MUSCLE
alignment on the ViPR server. After completion, ViPR
assists users in viewing, exploring and modifying the
label or sequence information within an alignment.
Upon visual inspection with JalView, the alignment of
nucleotide sequences from the Dengue virus use case
shows that these genomes are well conserved overall
with the serotype-specific relations observed in the phylo-
genetic analysis recapitulated in the sequence alignments
(Figure 1B).
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Figure 1. Online Bioinformatics Tools Provided in ViPR. Various bioinformatics analyses can be performed, visualized and stored on the ViPR
server. (A) A phylogenetic tree, in Archaeopteryx, colored by country of isolation with dark gray, light brown, tan, orange, red, dark red, blue and
light gray representing viruses isolated in Vietnam, United States, Cambodia, Venezuela, Colombia, Nicaragua, Ecuador and Brazil, respectively.
Strains belonging to the four serotypes are indicated. The blue text and brace indicate DENV-2 strains belonging to a Nicaraguan lineage, whereas
the orange text and brace delineate DENV-2 strains from a Brazilian lineage. (B) A portion of a multiple sequence alignment, visualized with
JalView, constructed using MUSCLE from the nucleotide sequences for the DENV use case. (C) The Sequence Feature Details page showing the SF
metadata and the VTs for a B-strand structure in the DENV-2 E protein, named Dengue_Virus_2_Beta-straind_617(8), spanning positions 617-624
of the polyprotein. (D) A DENV E protein structure (PDB: 10KS8) in the ViPR implementation of the Jmol structure viewer with o-helices in

magenta, B-strands in yellow and the SF from (C) highlighted in cyan.



Metadata-driven ~ comparative  analysis  tool  for
sequences. The metadata-driven Comparative Analysis
Tool for Sequences (meta-CATS) is an automated
workflow, developed by the ViPR team, to assist research-
ers in taking advantage of the breadth of sequence data
and the accompanying metadata. Metadata is the infor-
mation associated with the sequence record, including
time and place of specimen isolation, host species,
clinical symptoms, etc. By using statistics to simultan-
eously analyze the sequence and metadata, genotype—
phenotype associations can be inferred. This tool allows
users to quickly and easily select multiple sequences, align
those sequences, divide them into multiple groups based
on any one (or more) metadata type(s), perform
automated statistical analyses on the sequences and view
the results. The output from this tool has been validated
using a previously published sequence set divided into
two groups based on phylogenetic tree topology (32).

For the current use case, the DENV-2 polyprotein
sequences matching the original search criteria are
divided into two groups with 9 and 21 strains, respectively,
according to the topology of the phylogenetic tree men-
tioned above. The meta-CATS analysis identified 37 hom-
ologous positions that significantly differ between the two
defined DENV-2 lineages.

Sequence feature variant types. The SFVT component of
ViPR can be used to identify the characterized structural
and functional regions in the DENV polyprotein that
contain the substitutions found to differentiate the
metadata groups. For the current use case, polyprotein
position 620 was one of 37 residues that were identified
as significantly differing between the two DENV-2
linecages. This position is located within a structural SF
named Dengue Virus 2 Beta-strand_617(8), indicating
that this region contains a B-strand protein secondary
structure that begins at residue 617 of the polyprotein
and continues for 8 residues (Figure 1C), with the
Brazilian introduction corresponding to VT-1 and the
Nicaraguan introduction to VT-2.

3D structure visualization. ViPR includes the Jmol protein
structure viewer application to permit the rapid explor-
ation and visualization of virus-related structures from
the PDB. We have enhanced this tool by including the
ability to highlight ligands and active sites on the dis-
played 3D protein structure. Options to customize the
general appearance of the protein structure are provided.
Individual residues within the protein structure(s) for each
PDB file are mapped to homologous positions from
UniProt records to make comparison between different
structures and the associated amino acid sequence as
simple as possible. In the future, highlighting of immune
epitopes and other sequence features will be supported.

The ViPR implementation of the Jmol 3D structure
viewer was used to explore how the domains within the
DENV-2 E protein relate to the Dengue Virus_2 Beta-
strand_617(8) SF identified in the current use case by
highlighting the region using the customization option
(Figure 1D).
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Conclusions from scientific use case. The workflow that
was followed to explore the scientific use case confirms
previous findings that DENV-2 in the Western
Hemisphere exists as multiple endemic lineages that
cocirculate among human and vector host populations
(33,34). The meta-CATS analysis identified 37 amino
acid variations that significantly distinguish these
DENV-2 lineages, including one located within a known
B-strand of the E protein. Additional investigation will be
required to determine whether sequence differences in any
of these individual positions or their combinations affect
the secondary structure of the involved protein or play
a role in dictating different phenotypic characteristics of
these two virus linecages. The scientific use case addressed
here underscores the ability of ViPR to assist in generating
biologically relevant hypotheses that can then be tested
experimentally.

CONCLUSIONS

The Virus Pathogen Database and Analysis Resource
(ViPR, www.ViPRbrc.org) is an integrated repository of
data and analysis tools for multiple virus families,
supported by the National Institute of Allergy and
Infectious Diseases (NIAID) Bioinformatics Resource
Centers (BRC) program. The uniqueness of ViPR lies in
(1) integrating data from many sources; (ii) encouraging
the analysis of the extensive data contained within the
system; (iii) combining the available tools to quickly
perform complex analytical workflows; (iv) facilitating
rapid hypothesis generation using bioinformatics
methods for subsequent experimental testing; and (v)
allowing data storage and sharing with collaborators
in personal workbenches. By taking advantage of the
powerful suite of resources provided within the ViPR
BRC, virology researchers can streamline and expedite
experimental discovery, for the ultimate goal of develop-
ing improved diagnostics, prophylactics and/or therapeut-
ics for pathogenic viruses. The availability of such a
resource can not only decrease the time required for sci-
entific discovery at the ‘bench’, but also aid in translating
those findings to the development of viable diagnostics,
prophylactics and/or therapeutics.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
Supplementary Table 1, Supplementary Figures 1-5.
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